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ESTIM.-V IN; JOINTLY SYSTEM ANID COMPONENT
RELIABILITIES U1SING A MUTUAL CENSORSHIP APPROACH

bv
lHani Doss, Steven Freitag, and Frank Proschan

ABSTRACT

Let F denote the life distribution of a coherent structure of independent

components. Suppose that we have a sample of independent systems, each having

the structure . Each system is continuously observed until it fails. For every

"" component in each system, either a failure time or a censoring time is recorded.

A failure time is recorded if the component fails before or at the time of sys-

tem failure; otherwise a censoring time is recorded. We introduce a method for

finding estimates for F(t), quantiles, and other functionals of F, based on the

*censorship of the component lives by system failure. We present limit theorems

that enable the construction of confidence intervals for large samples.
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1. .NTRODUCT[ON AND StMAP..RY.

Consider a system of independent components labeled 1 through m. he assume

that the system forms a coherent structure, which we denote by ,. Specificallv,

* "the system and each component are in either a functioning state or a failed state,

and the state of the system depends only on the states of the components; see

" Barlow and Proschan (1981, Chapters 1 and 2) for definitions and basic facts

relating to coherent systems. Let F. denote the life distribution of component2

J, J=, 2 ... , m, and F,, or simply F, denote the life distribution of the

svstem.

Suppose that we have a sample of n independent systems, each with the same
0

structure t. Each system is continuously observed until it fails. For every

-* component in each system, either a failure time or a censoring time is recorded.

A failure time is recorded if the component fails before or at the time of sys-

.- tcm failure. A censoring time is recorded if the component is still functioning

at the time of system failure. From these failure times and censoring times we

-. wish to estimate F.

In order to distinguish between components and systems, we index systems

with the letter i and components with the letter J; i ranges over 1, ..., n, and

J over 1, ... , m. All random variables are non-negative. We define the following

random variables:

T. is the lifelength of system i,1

X.. is the lifelength of component i in system i,0 13

for each l, X X1 , ...., X n are iid F.,

= min(\ij *T,)

and

. I i.. T. ), where I A is the indicator fiinctioyi of the ;et A.S19 ii I

'r



Z.' records the time on test of component j of system i, and 6.. indicates

whether component j in system i is uncensored (6i. = 1) or censored (6 0).- " ij i
For each j, "l* ..... nj are jid with distribution H. The sequence {(L ,5. .);

mii , I_ i < n contains all the information used in estimating F, and thus is

a called :;:-e & z- -nfra-' -2on.

The system life distribution F can be estimated by the empirical estimator

.emp defined for t>-O by

F (t) r t(T t )
n
i=1

F emp does not fully utilize the sample information. Specifically, it does not

use the following information: the identity of the components still functioning0-

at system failure time, and the failure times of the components failing before

-" system failure time.

" . We propose an estimator 1- of F that uses the information described above.

The estimator, described next, is based upon estimatora of tlc C0mtPonent life

distributions F 1 .... F For each J, let - h * i be the ordered
1' ni-. - - Xfn

values of Z1j' 2i ...... Dfine

11 if Z crre-pTnV , ,.,'

1.2

0 if .. orr

(When an uncensored and :t c~n rh <r. *

-. [._:': [ vation is considered to hayv rr, ,

*O estimator of F:

0ti ~Fit : =1 - .

The definition above differs from the 1sta ,, :4 . . .

mator in that F.(t) is not arbitrarily detiniJ .

For each coherent structure . of independent . , Thl

e•q



- .a function he, called the re iaisuch that

F(t) =h(F(t)...,F (t). (1.4)

Here, F (t)= I- F (t) and F. (t)= 1 - F. (t). A more detailed description of relia-

bility functions is provided in Chapter 2 of Barlow and Proschan (1981). The

estimator F is defined by
"'I- h -h(F (t), F (t) if t <r T

P (t) = m ~ (1.5)

if t T n.

Here, Tn) =max(Tl,T ..... T). The estimator F has obvious intuitive appeal.

The properties of the Kaplan-Meier estimator have been studied extensively

by various authors. Under the assumption that the censoring variables and the

* 1 lifelengths are independent, the Kaplan-Meier estimator is the maximum likelihood

estimate (Kaplan and Meier, 1958; Johansen, 1978). Regarded as a stochastic pro-

cess, it is strongly uniformly consistent (Fbldes, Rejtb, and Winter, 1980) and

converges weakly to a Gaussian process (Breslow and Crowley. 1974, Aalen, 1976,

and Gill, 1983).

The main results of this paper can now be stated. Let D[O,T1 be the space

0of all real valued functions defined on [0,T] that are right continuous and have

m'*' left limits, with the Skorohod metric topology. D [0,T] denotes the product

metric space.

04

THEOREM 1. Suppose F , F , . .. , F are continuous, and let T be such that F. (T) < 1
1 2 m

for i=l, 2....m. Then as n -

' n 2 (F- F l FF () V 1(W W ...... '

weakly in Dm[O,T], where W1, W are inderendent mean 0 Gaussian processes.

TIe covariance structure of W is given by

SI dF.(u)

Cov(W. (t 1 ) ,W.(t ) = F(.tt )F t,) f - for Oe ti t , T. (1 O)

S0 1(u)f.i(u) - 1 2-"

.*:- .. " '- : : , .. .. -.. ". . . ."
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Since in general the dependence among the F.'s ma\" be complex, Theorem 1 is

not a trivial extension of the corresponding result for the individual Kaplan-

Meier estimators F..

The next theorem gives a central result regarding the estimator F.

THEOREM I.. Suppose F1, F2, .*.., F are continuous, and suppose T is such that
m

F.(T) < I for j = 2, .... m. Then as n-

n (F - F) W weakly in DfO,T]

where W is a mean 0 Gaussian process with covariance structure given by

* Cov(W(t) ,W(t 2 )) = j= (UlP ... u) U urn) =

• ~(F1 (tl),...,F F(tl)

K (u h . M) (u ...,u (1.7)

(F (t ),.... (t,))
1 t ,2

~1  dF.uFj(tl)F j (t') f Jfor 0 <- t1 <t, <T.

0 H.(u)F (u)

The commonly used estimate of the variance of the Kaplan-Nleier estimate is

"* given by Greenwood's formula (see Chapter 3 of Miller, 1981). Since this esti-

mate isknown to be consistent (see Hall and Wellner, 1980), it follows that for

.*. fixed t, the variance of F'(t) given in Theorem 2 can he consistently estimated
fie t, th vaiac ofFt*vetmtd

:-... This enables the construction of confidence intervals for F(t) in large samples.
01

The method of estimating F proposed here has an additional advantage: the

estimates FI' F2 . .... Fm can he used to estimate the life distribution of any

structure - whose components form a subset of the components of ¢. Specifically,

if h is the rcli.;b ilitv function of , then the estimate F defined by

(t I h, (t),... Fm M '))

f j

9 ,
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when suitably normalized, converges to a Gaussian process; this fact will be

*clear from the proof of Theorem 2.

. In the large literature on point and interval estimation of system reliability

" it is always assumed that the components are tested separately; for a survey and

references see Mann, Schafer, and Singpurwalla (1974). The idea of basing the

estimate of the system life distribution on estimates of the component life dis-

tributions with the resulting censoring considerations is new in reliability theory.

This approach extends and gives a novel application of censoring methodology.

The competing risks model corresponds to a series system. Aalen (1976)

showed that for this model, the vector of Kaplan-Meier estimates (F F )
m

when normalized, converges to a multidimensional Gaussian process, whose com-

ponents are independent. This result corresponds to our Theorem 1 for the case

of a series structure.

This paper is organized as follows. Section 2 gives some definitions, pre-

liminarv results inclading the strong consistency of F, and results without proof

concerning the Kaplan-Meier estimator to be used subsequently. Section 3 is tech-

nical, and applies martingale theory to obtain the results of Theorems 1 and 2.

It contains all the terminology and facts concerning martingales that are needed

to prove Theorems 1 and 2. Section 4 gives an application of the results of Sec-

tion 3 to system design methods. The Appendix gives a proof of a result used in

Sections 2 and 3.

2. PRELIMINARIES AND DEFINITIONS.

Corresp nding to a generic system, we define generic random variables X., ,

" , and T, such that the random vector (Xj,Z.,6i,T) has the same distribution as

-• *1~(Xi i,,'ij,T.) for i =1, 2, ... ,n, and j= 1,2, ... ,m.

,eq

• " " " .o - . - '" '_ _ : i " : ." i . . . . ', . . . *, . . . . .. . , '



In Section I it is noted that the strong consistency and weak convergence

results for the Kaplan-,feier estimator are valid under the assumption that the

lifelengths and the censoring random variables are independent. In our model,

for each j, X. is censored by T, and for a coherent structure these two random

variables are dependent. However, it is possible to redefine the censoring vari-

ables to circumvent this difficulty. This is best explained in terms of a simple

example. Consider the structure shown diagrammatically in Figure 2.1.

12

* Figure 2.1.

In the example T= 1 A (X, v , where xAy = min(x,y) and xv =max(x,y). Consider

now component 1. Clearly X is censored by Y I =X, vX , which is independent of XI

Similarly, X is censored by Y =X1, and X3 by Y =X2 3 *l'

In the Appendix it is shown that in general, for each J = 1, ... , m there is

a nonnegative random variable Y. such that

(Z.,)=(X. AY., I(X. YJ), (2.1)

3nd

N. and Y. are independent. (2.2

0-
l e refer to Y. as the ?,,sci "  r Statements (2.1) and (2.2) imply

that the censoring of a component lifelength is described by the random censorship

model (Gilbert, 1962). Roughly speaking, Y. is the lifelength of the system if X.

is replaced by .

In order to describe the distribution of Y. we introduce some notation. F:or

S(v ,v ) m[0,1] , [0,1], and i = 1, ... m, let

)[.. ~ ~~~(.,v = VY . . ' 1 ,
' V.i ~ ' . vn ._. "

3.-J-

#4
. . . . ~ - .- - - -v



Let F(t)= Ft) F.. 44(t)) and recall that 11. is the distribution of 2.. In the

m 1

Appendix it is shown that

P(Y > t) =h (1. P(tn 24

S.i. where h is the reliability function (see (1.4)). Thus,

l. (t) F (t)h (1., F(t)). (2.5)

-ke now review some terminology from reliability theory (see e.g. Barlow and

Proschan, 1981) to be used in the proof of consistency of F and in later sections.

F For a coherent system of m components, the states of the components correspond to

a vector U = (U1 ... Ur), where U. = I(component i is in a functioning state). The
mI

£ :&: :t 'rG t acor. is defined by (U)= I(System functions when U describes the

0 states of the components) for U Am , where A ; {Ol It is well-known (and easy
mm

to see) that for p= (p,. . ,pM) E [0, 1

m U. I-U.r r i 1 3; 20
h (P) = (U) p(1 pj) (2.6)

UcA j=l
m

0where 0 1 by definition.

The Kaplan-Mfeier estimates F. given by (1.3) will be denoted F. when we want* 31

to emphasize the dependence on n; similarly for the estimate F of system life dis-

-n -n
tribution. Also, F will denote the vector (F ,' ).

I' m

*Tht following propositions specialize the properties of the Kaplan-Ieier

estimator investigated in the literature to the estimators F..

[! rJQ, rS[TION 2. 1. (V:6ldes, ReJt6, and Winter, 1980). If T >( is such that 1 IfT) 1,

* then

-- I I tsup m -F~t ij1
OtIT n

Thus, 1: is a strongly uniformlv consistent estimator of F. on the interval {I,T]

ti-.. llnder the assumPtion of cnnti ni tv of the distributions of the component

O.1l



1ifelenIths and the censoring random variables, the rate ot convergence is

improved.

PROPOSITION 2.2. JPbldes and Reitb, 1981). If F. and h1i., are continuous and

T >0 is such that H.(T)< 1, then
3

s -n Zn n !
P} sup t .t - n

1~! nj
O T

We note that if F ., F are continuous, then h (1I_ is continuous' see Lemma

2.1 below.

*PROPOSITION 2.3. (Breslow and Crowley, 1974). If F and h(lj,F) are continuous and

T > A is such that H. (T) < 1, then n2 (F. - F.) converges weakly to a zero mean Gaus-

sian process W on D[O,T] whose covariance function is given by

1 t dF.(u)

Lov(W(t0),W(t)) = ( )(u)Ft .(u)

3 3

. The follo%,in- lemma is needed in the proofs of strong uniform consistency and

,."aemk convOrgence of F .

L-,4, 2.1. FOr any structure of m independent components, the corresponding relia-

nbil itv zmnct in I is twice continuously differentiahle over [,lI m, mnd the first

.rod second part:a I derivatives are bounded in absolute value by I uniformly Over

P rw f Iv r . - . p_ , [),1 mnd k = 1, 2 .... m, we have 1y (2.6),

%T))=h lk, ). . 2.-

[: rom: 2. - * ', ha ',*

.-"



and for k

7'Th. - I

:Pk)PP

in an obvious extension of the notation (2.3). By (2 . 1 h is continuous over

[I,1. This fact together with (2.7), (2.8), and (2.9) imply that the first and

second partial derivatives are continuous on 10, 1 ]1 ; hence, by Theorem b.IS of

Apostol (9b4), h is twice continuously differentiable on [0, 1 1~ Equation (2.7)

implies that the first partials are bounded in absolute value by 1. Since each

of the two quantities inside the braces on the right side of (2.9) is between 0

and 1, it follows that the second partials are also bounded in absolute value by

1 1. The lemma follows since p is arbitrary.

We now establish the strong uniform consistency of F and give the rate of

convergence.

....... d ... .4. Let T >0 be such that for i = 1, .... m, min(F.(T),F. (T)) > 0.

Th e n

(a) P sup F(t) - F(t) =o - =1.
SO<-t<T

(b) I f :1", F are continuous, the rate

O (in n 21  Z/ n Zn n
a may be replaced by n nn

nn

root c "' f ix t 10 ,T nd consider h -1n: (t -h. (t). Since h is continMu uslv

0 ifferent ib I e over 0, 11 y tv Lemma 2 1 .,e can annlv the ean Value Th*feurem {see

fr example \p(stol I, 1964, Theorem 1. I there exists a point \* lvino en the
t

lit:. <~r::, n }oi',i st [n~t: a d - (t; such th:at

1. *1: 't - '? t , = .h 'p ,.= f r - 2l} , . I12

".t4



-10-

where 7h is the gradient of h In view of Lemma 2.1, Proposition 2.1 proves

Part (a), and Proposition 2.2 proves Part (b).

3. WEAK CONVERGENCE RESULTS.

In Section 3.1 we outline the proofs of Theorems 1 and 2 and indicate where

the theory of stochastic integration and counting processes is needed. Section 3.2

reviews the elements of this theory that are needed in this paper. Section 3.3

uses the results stated in Section 3.2 to give rigorous proofs of Theorems I and 2.

0Throughout Section 3 we adopt the convention that -=0. The index n used in

defining a process is suppressed whenever possible.

3.1. Sketch of the Proofs of Theorems 1 and 2.

To prove Theorem 1, we show that for any T>0 satisfying max F.(T) < 1,

that
- F F1-F1 F -F d

n _____m d (W-, .. , Win, (3.1)

where W ... , W* are independent mean zero Gaussian processes with covariance
I m

* given by

Cov(W {tl), Wt(t)) = f _ (u) for 0<t <t T. (3

0 H. (u)F.(u) -

J 3

(Now and henceforth, the symbol d signifies weak convergences in D [0,T].)

Theorem 1 is an easy consequence of (3.1) and Theorem 5.1 of Billingsley (1968).

We prove (3.1) by a general method introduced by Aalen (1978) and later

refined by Gill (1980). We define the stopped process F n on J,), i = 1, 2,

m, by

F(t) F. (t AZ and Ft (t) = 1 - F.(t) (3.3)
(n) i 3 _

and use the following decomposition:

7-
°

. . ..



(F -F - I

n 1 m mt

F* 1..F* ~ f ~.i Fp -F F-K= 1 1 m m 1+n+1 l1 m m m m

IE* m F1 1 m m

It is easy to see that

f-. . 1- : p F
n' 1 1 1 1 m 0 m. (3.5)

-FF F F
1 1 m m

in Dm [0,T]. (Now and henceforth, the symbol p signifies convergence in probabil-

ity.) Thus, the proof consists in showing that

-F* F -F*
n I m (3.6)

t) (t)

To show (3.6) we first establish that for each j and for all n,n

.3)

tE [0,T] is a martingale with respect to {Ft; tE [0,T1}, where F is the a-field

generated by the observed component failure times up to time t. Formally, Ft is

the completion of

o{I(..i! s , 6.. = l); li _<n, l_<j_<m, s_<t}. (3.7)

;Ve complete the proof of (3.6) by applying a multivariate version of a martingale

central limit theorem due to Rebolledo (1980).

To show t [0,T] is a martingale, we define

* tha{~ n F )~t Ft~

thf, foIInwino processes on [0, )

J t). (.8)

I ' .. , . . . :. . . . .. ,
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N..(t) = I(Zi <t 6. = 1). (3.9)

n!..Nn) N i=1ij (t). (3s.10)

v .(t):  J( > t). (3.11 )

1n (3.12)

o V. (s)_n

nt ltV . (s)s]
A .(t) =.(j dF (s) A= (t) (3.14)

0 F (s)L -

Mi (t) =Ni (t) -Ai (t). (3.15)

n n n

M(t) =Nn(t) - An(t) A= N.. (t) . (3.16)

The process N.(t) records the number of uncensored failures of component j up to

time t. The process V. (t) records the number of systems in which component j is

at risk at time t-. We note that for each t, Ft is the completion of

a {N.(s); 1 <i-5n, 1 j m, s- t}. (3.17)

The following proposition is fundamental in establishing that

-- '"I [F (t) - Ft (t)
n ' t T ] is a martingale.

F (t) )

PROPOSITION 3.1.1. (Gill, 1980). Suppose F1, .... Fn are continuous and t 0O is

such that max F.(t)< 1. Then for each j and for all n,

:.. n J J 2  .dM(s) (3.18F ! (t) t J (S) F (s)

*I . .
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where F.(s-) is the left limit of F.(s).

The theory of counting processes is needed to show that {(M (t), F ); t E rO,T]

• is a martingale. We apply the results in Section 3.2 to show that

"t J(s) F (s-)
n '2 d V. (s), Ftj; t E [0,T] is also a martingale, and to verify

0-V(s) Fj(s) _

the conditions of the martingale central limit theorem.

For fixed t, Theorem 1 and a standard application of the delta method (see

for example Section 6.a.2 of Rao, 1973) yields the result that n 2(F(t) -F(t)) con-

verges weakly to a normal distribution. We generalize this argument for the pro-

cess to prove Theorem 2.

3.2. Review of the Theory of Counting Processes and Martingales.

References for the material below are Chapter 2 of Gill (1980) and Chapters

1- 4 of Chung and Williams (1983). A very accessible review is Andersen and

, Borgan (1984).

" For a complete probability space (2",G,P'), a family of sub-sigma-fields

{G t 0} of G is called a standard filtration if for each

(i) (2',Gt,P') is a complete probability space,

(ii) G cG for s < t,

G tn'IDI (iii) 0~ u= u"C

u>t

A process Y= {Y(t) t 0', is said to he adapted to the standard filtration

t t _>O  if for each t, Y(t) is - ,:e surab Ie. The word adalpted will refer to

S'the filtration Gt t -_ol.

A special class of adapted processes is the class of predictable processes.

' Rou ylv speakin,,, Y is predictaible it' it .'aliie at t is determined by its values
at times up to but not includinw t.* \ ,iri1l definition is g VOen on page 3's of

Chuno and ill ams ( 1083I. hc ,il I li, thc 'ict that in adipted process that has

• - a.s. left continuous p ith preiht le.

eq
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A martingale Y is defined to be square integrable if sup E Y-(t) <
t

Henceforth, we assume that all martingales in this section are with respect to

-,t t 0} and are square integrable.

- It is well known that for a martingale Y, there exists a unique predictable

process with nondecreasing paths, called the quadratic variation process of Y and

denoted <Y>, such that Y-- <Y> is a local martingale (see page 19 of Chung and

Williams, 1983, for a definition of a local martingale). It follows from Propo-

sition 1.8 of Chung and Williams (1983) that uniformly bounded local martingales

Lire martingales. Since all local martingales encountered in Section 3.3 are uni-

formlv bounded, the reader may substitute the word martingale for local martingale

throughout this section without affecting the material in Section 3.3.

.If Y and Y, are martingales then their covariation process <YI,Y 2> is defined

by <Y1 ' > =(<Y + Y'> - <  Y, >) . Kunita and Watanabe (1967) showed that <YY2 >

is the unique predictable process with paths of bounded variation, such that the

1process Y2 ' <Y ,> is a local martingale. It is easily seen that for every

martingale Y, we have <Y>= <Y,Y>.

*For a process of bounded variation Y, define IIgII to be the process such that

" "YH!(t) is the variation of the paths of Y on [O,t]. The following proposition is

used to show that the integral in (3.18) is a martingale.

PROPOSITION 3.2.1. (Dol6ans-Dad6 and Meyer, 1970). Let G' and G, be predictable

processes and Y and Y, be square integrable martingales of hounded variation such
1

that E f Gk(s) d Ykl(s)< , k= 1, 2.

* 0
Then the processes X1 and X2 defined on [O,t] whose paths are defined by theII
ILebesgue-Stieltjes integral

s

* X (s) = fG(u)dYk(u) s~t,0

is a local martingale on [O,t]. Furthermore,

*1 "°



<X 1 ,X 2 >(s) =G(u)G-(u)d<Y1 Y1 (U)
0

for s t.

A vector of adapted processes (YI, .j. ) is called a counting process if the

following hold a.s.

(i) Y(0) :0, J= , 2 ,....m. (3.19)

(ii) The paths of each process Y. are nondecreasing, right continuous

and have jumps of size +1 only. (3.20)

(iii) No two processes jump at the same time. (3.21)

Theorem 1.9 of Meyer (1976) implies that for each process Y., there is a unique

predictable process B. with right continuous and nondecreasing paths originating
1

at 0, such that Y.- B. is a local martingale. The process B. is called the com-
j J

S.pensator of Y..

The following proposition is adapted from a theorem of Murali-Rao (1969) and

is useful for identifying the compensator.

PROPOSITION 3.2.2. (Gill, 1980). Let Y be a univariate counting process and let

t E(O,,) satisfy E Y(t) <-. Define

:22 t, k=1, 2, Z., =0, 1,

and
Gt kk II 2

t4 Uk = E(Y(t k  )-Yftk) G ), k 2d,'.'" =O k . It , 2 . . .

'Then there exists a subsequence of integers r , rk- as k-,, and a unique ran-

•w doam variable 1, such that for all bounded random variables X,

E (XLJr ) -*E (X )
rk

as k- - The compensator B of Y ;atisfies

"- g~Bt) =1I1

We note that this result holds for each fixed value of t, and that special
#4
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care needs to be taken when dealing with a continuum of t's.

The following proposition is a special case of Theorem 2.3.1 of Gill (1980).

PROPOSITION 3.2.3. (Gill, 1980). Suppose (Y1, .. ,Y) is a counting process with

compensators ..... . Define the process Z. b .= ., m.
1m 3 i - '

If the processes (B..B m have a.s. continuous paths then the following hold.

(i) : is a local square integrable martingale, j = 1, 2, m.

B. if j =1-
(ii) , Z.1>1

1 2 0 if

We use a multivariate extension of a martingale central limit theorem due to

'  Rebolledo (1980) in Section 3.3. The conditions of the proposition below are

stronger than those used by Rebolledo. We use the stronger conditions because

they are easier to understand and do not take much effort to verify in Section 3.3.

U Let fl, f be positive functions on [0,-).

PROPOSITION 3.2.4. (Gill, 1980). Suppose that the sequence of vector processes

(Z Z ) n= 1, 2, ... , satisfy the following conditions. For every c >0,

l<j1 , j2 
< m, sE [O,t], and every n,

(i) Zn is a square integrable martingale, (3.22)

(fj(s) if Jl J,S,(s) (3.23)

j 0 if i

there exists processes such that

(-"iii) .~ and T. are square integrable martingales, (3.24)

,'-' n zanE -nF
.iv) Z "i . - (3.2S)

(v) Z . has no jumps larger than E, (3.26)

(vi) Zn- has a.s. paths that are of bounded variation, (3.2-)

- . . --o ..

.'.. . . . . . . . . .
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(vii) the processes Zne and Z .E do not jump at the same time, (3.28)

(viii) <tj , zn >(s) P 0, as n-*. (3.29)

Then,

n nd(7' . . M)  d (ZI 1 .... 3ZM )

where Z1, .... m are independent Gaussian processes with mean zero, and covariance

structure given by

Cov(Z.(S 1 ), Z.(s 2)) = f.(s 1 -sl <s < t .

*[ 3.3. Weak Convergence Results.

All families of a-fields defined in this section are standard filtrations.

This fact is a consequence of Theorem A.2.1 of Gill (1980).

LE NEA 3.3.1. Suppose that Fl ... F are continuous and suppose T is such that
m

F.(T)< 1 for j= 1, 2, ..., m. Then for each n= 1, 2, ... , we have

l+F. (T)

(i) The variation of the paths of M. is bounded by m on [0,T] .(3.30)

(ii) {(N1n(t), Ft); tE [0,T]} is a martingale for each j, where Ft is defined

by (3.17). (3.31)

<,,n (t), An (t) if j I j2
(iii <j2(t ,M (t) > = 0 31f 1 j2(3.32)

i J 20 ifJl 2

Proof: The proof of (i) is immediate.

To prove (ii), we show that for i = I, 2, ..., n, M is a martingale on [0,T].

Part (ii) then follows since a sum of martingales is a martingale. If we assume

that F. is absolutely continuous with a continuous derivative and that the compen-3

sator of N.. is absolutely continuous with a left continuous derivative whose right

limit exists, a simple proof that M.. is a martingale on [0,T] can be given as

follows.

It is not difficult to verify for every tE [0,T] that
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-.-'-,f. (t)

lim -P(Ni .(t+h) -N (t) ift) =V. .(t) "
-. . F.(t)

S where f. denotes the density of F.. This is enough to show that A.. is the com-

pensator of N... (See Lemma 3.3 of Aalen, 1978.) It now follows that N1.. is a.'.13 13

martingale.

We now consider the general case. For measurability reasons that are idi-

cated later on in the proof, we first show that Mi.. is P martingale with respect

to the filtration {Gt; tE [0,T11, where for each tE [0,T], G is the completion of
t t

a{I(Xij 5 s); l!i_<n, i!5j _<m, s<_t}. We then use this fact in a simple argument

to show that M.. is a martingale with respect to Ft [0,TI}.

To prove that Mij is a martingale with respect to {Gt; t E [O,T]}, we show

0- that A.. is the compensator of N.. with respect to {G tE [0,T]}. Let U.. denote
13131

the compensator of N.. with respect to {Gt  tE [0,T]}. The key step in proving
13

that A.. =U. a.s. involves the use of Proposition 3.2.2 to show for any fixed
13 13

t E [O,T] that

P(A. (t) =Ui (t)) = 1. (3.33)

"'. Since A.. has a.s. continuous paths, it follows that A.. =U.. a.s. on [0,T]. To13z 11 13

prove (3.33) we use the following definitions. For tE [0,T] define

tk, = Z2-k .1 2k

and k

Uk= k E(Ni j (t k , )+ l -N - (t k,z)Gtk) k= 1, 2....
Z=O k,z

A key step in proving (3.33) is to show that

U A. (t), as k-. (3.34)
*k 13

Assume that this has been done. Proposition 3.2.2 then implies that there exists

a subsequence of integers {rk) rk- as k -- and a random variable V satisfyingki k

E(XUr ) - E(XV), as k- o (3.35)

r

for all bounded random variables X, and

P(V= uij(t)) = 1. (3.36)
:1
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It follows from (3.34) and (3.35) by standard probability arguments given

below that A ij(t) =V a.s.. Statement (3.33) now follows from (3.36).

For the sake of completeness we show that (3.34) and (3.35) imply that A..(t) =
13

V a.s.. It follows from (3.34) and (3.35) that there exists a subsequence of

integers (X XI-+- as Z- - such that

UX -4- Aij(t) a.s., (3.37)

and

E XUX - E XV, (3.38)

as Z-* for all bounded random variables X. Let E>0 be arbitrary. Define the

sets C IC c ... as follows:

C = n {IUx -Aij(t) E_ , a= 1, 2, (3.39)
Za 2

Statement (3.37) implies that

lim P(C) = 1. (3.40)

Let D and D denote the sets {V >Ai (t) + E} and (V <A. (t) - 0}, respectively.

For each a, (3.38) implies that

lim E(I(D n )UA ) E I(D+ nC LV. (3.41)

* Since the definition of C implies that

un E(T(D n C)L ) E(I(D nC )(A..(t) + E)),

* it follows from (3.41) that

E(I(D nC )V) E(I() nC )(Ai (t) 0 (3.42)

We conclude from the definition of D+ and (3.42) that P(P+ qC 0 for each a.

Statement (3.-0) implies that P(D4) =0. Similar arguments show that P(D)=0.

Since a was arbitrary, we conclude that V A .. (t) a.s.

• -.' - - ''" .7 * * *J .* . ~ -.
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We now -prove '1(3. 34 For each k 1 2,.... 1, 2....define the set

"'L+ = .B (t] t . , > t k

and the random variable

S (B - (N (t N+ - (tk- ) .

We note that

l if t- <Y < X. <t
=-, 1.1 11 k,;+l 3.3:7 (3.43)

-k + 1 " 0 otherwise

(where Y.. is defined by (2.1) and (2.2)) and that

is Ct -mpasurable for all k and 21. (3.44)
tk

It is easy to see that is not F -measurahle and this is the reason we use
-k,, t

the filtration :t; t E [0,T]3. To prove (3.3-1 we first show that

k1K

L l P 0, as k-. (3.45)
=0

Assuming the validity of (3.-15), Lemma 2.5 of Rootz~n (1983) together with (3.43)

and :3.4-1 immediately imply that

k .k 1k

F (I (B E(Ni (t k (tkZ)IGt Pn, s"1"K t ,; i l J tk'. l Xii ,

'_•'e then sho, that
j-..-- I2,- +

A. -t t I B 1  a... 3.47

O,

>- <tatements (3Ab; and (3.47 now imply (3.34.

"We now prre (3.45). For each k,

P(- - ,0) 2 1 P(t <Y x <t
" ' '-, 1+ , i 1 , l



A, 21 -

-k t
I -1 kZ+1-

1 (F k, +1) - F (u))dh I F(u)

k k

- [F (t , h ( (

= tkZ+1 -(' i(t k [h (I . k '

< sup (F (s+ F)-Fi(s)) -O as k- ,

since F. is uniformly continuous on [O,t].3

We now prove (3.47). Since for each k and Z I(Z >t t ) is C -measurable,
ii k~z k2

we have

*i E(T(B +1) G~9) = i(Z >tkZP(tk <Xij _tkZ+l t,

It is easy to verify that
tk9t+) dF (u)

P(t k' z <Xij -< tk' Z+ I ,tz i kz tk Fj (tk )

Thus,

S1 Ztkz+l dF.(u)

k t ij tk,Z
E(I(BkI)IG, ) =I(. >t .) -

k, ( tk F. (tk,d

- Define the random variables Y by

2 tk 2+l dFi(u)
Yk - [ (Z >t f

),=0 ij k'2 tk, F (

We prove (3.47) by showing that

k2=O -((B G )-Yk- O a's. as k 'tk,

and
E YkI 13(t) a.s. as kk

"''- ij"

We proceed to prove these as:,ertions.

-r
. *. . * ..-
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-. -, I-I B- -- - .-.-- --

~htk~

k t- -- -

s pI t P s - ( I j

~~0_s -_,t-\ . i

--. ,. -

susup (Fi- + -0 as a k

IL Tli< ... < ' ') consequentl 1% 3.34), and hence (.5.33).

'.e now, ,nr oe that M1.. is a martingale with respect to the filtration

-F t  t < OT! It is easy to verify that

F. F C- for each t E. [0,T] (-,.48)t t
N.. is adapted to IF " t, [ T] (3.49)

V J. i ) dat~ to >F u t-

1 13)t

Ti s prve ",, :3.t cosently. (33, adhnet33)

F [". t.ie s adapted to yF •ot 5 ,rifth1

tt

t tt

etn N,:ol ;frm(.. i andapted1 ta o F tac i [and'~ (3.49)t T

I 11 s 1

"* hz, - -Vrtn .a ,,is adpedt to ,'F ; t { 'F, .ro (3.50i) )s~e

p r

,.n~ " -'. .:co (4 8 tad t .1 is the comcnhitan of for at i.

f o lrth r t4. ,

-::.--.: ., .. : -, _:-,. ,7 : :.,. : . .. n , ,- , n
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An alternative way to prove that %.. is a martingale is to use Lemma 3.1. 1

of Gill (19S0 to show that A.. is the compensator of . h'hile shorter, this

anproach is not as straichtfoiard as the method used above.

.e use the filtration (F • t E 1O.TI} because it has a natural interpretation:
t

F represents all the information available at time t. It is also the filtrationm t

most widely used in the literature. However it is clear that Lemma 3.3.1 is valid

for any filtration satisfying (3.48), (3.49), and (3.50), and furthermore the

processes defined by (3.8)-(3.16) are adapted to this filtration. For the remainder

of the proofs of this section, the filtration enters only via Lemma 3.3.1 and the

measurability of the processes defined by (3.8)-(3.16). Thus, the results of this

section can be proved using any filtration satisfying (3.48), (3.49), and (3.50).

However, for the reasons stated above we shall continue to use (F tE [0,T]}.

Proof of Theorem 1: We proceed to prove (3.6). We first show that

n2 dM(s ) is a square integrable martingale on [0,T]. It is easy
0 V (s)F (s)

J .(t)F. (t-)
to see that for each j and n, the process n" J - has left continuous paths

* V". t)F. (t)

a.s. and is uniformly bounded by n' on [O,T. A consequence of (3.50) is that
F. (T)€J

J. is adapted to F . We note that an equivalent formula to (1.3) for F. can be. t 1

given by

F. (t"1,--' ( 1-x (is)- N. (s- 3.2
ej J s~t ' V.i(s3 3 .N N

. where in the product only a finite number of the terms are not equal to 1. It is

* .. easy to see from (3.523 that F. is adapted to F .it follows from Theorem 3.1 of

tt

rChung and Wi liams (1983) that the above processes are predictable. For each n it

follows from (3.301 that 3

t Ki (s~ I s-I n (I + F. T
V- (s (3.33n ____V______"
\ .( ( 5 ) : F s ) ( F " ( T

*"
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Proposition 3.'.1 together with (3.33Z InJ 3.18 ip IY that for e:ich n and 

4 -F F
-M n --- "- is a local martinale on T0,14. Since these local :mirtinoales are Uli-

3
formly bounded for each n, they are square ntecr:hle *":rtincales on [0,T]. The

proof of (3.6) follows from Proposition 3.'.4, ,hose condit ions we now verify. We

SF - Ft
have shown that (3. holds for n , nd te n(,o, check 3.23). Proposi-

'F.

tion 3.2.1 implies that for 1<IJ, Ji-m,

F". -F*. f.. - F*.

n n~

,' .11 ) 3)( 4~(3.54)

'-_____1_- _ | 2 3 d<M. , .M > (s).
0 V (s) J (s) i (S) j

- "(s)(s)F

.- ~~Thus, it follows from (3.32) that for j j

t1 j j
1sF s v) p (S)

Statements (3.54) and (3.32) yield for each t [0,T] that

11

-n 1 Ft n n. () 0 ( (

< .3

" > 1t) n dA (s

. . .. s (- .~ 3*1.

The uniform consistency of the Kaplan-MIeier estimator (Proposition 2.2) and an

application of the G;livenko-Cantelli Theorem (modified in ai ninor ) together

with the fact that . t' -0 now oive that
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(s) (s t dF(s)nf - J.( ) ,( - dFj(s) f - 3 a.s. as n ,.(3.57)

0 (s) ( 0.3(s) F s (s

Thus, condition (3.23) follows from (3.55) and (3.5-).

For each E >0 define the following processes.

-e 7. s). s-7rn2 .(s)F. (s-)
n 2=n t ~ (s)

0 \.(s)F.(s) V.(s)F (s) -

t 7 (s)F (s-)-f ni. . (s)F.(s-)(t n. - < d _.(s)

S LV. (s)F.(s) _ j V.(s)Fj(s) j
J .3.3 3

It is clear that 2. and Zn are square integrable martingales, and that their
4 3 -3

sum is equal to the right side of (3.i8). Conditions (3.26), (3.27), and (3.28)

*, are trivially satisfied.

g We now check (3.29). Propositions 3.2.1 and (3.32) imply that for each

t E [O,T], 52
) "Js (s) 3 V.(s) Fj(s)

Almost surely, the indicator inside the integral is 0 for all large n, by the

Glivenko-Cantelli Theorem. This proves (3.29) and concludes the proof of Theorem

1.

Originally, we proved the asymptotic normality of the vector (Fl- F ..

Fm- F ) using the method of Breslow and Crowley (1974). The proof was conceptually
n m

simpler, iot requiring the introduction of various families of a-fields and the

heavy machinery of stochastic integration and martingale central limit theorems.

However, we were unable to obtain the covariance terms in the asymptotic covari-

- ance matrix.

Suppose the life distributions of the components all have infinite supports.

It is straightforward to show that Theorem 1 is equivalent to

0
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nF i ....1 Fm ) (WIp .... ,W) weakly on D [O,-), (3.59)

,i where D[O,-) has been equipped with the standard metric for convergence on com-

pacta (see Definition 1, page 123 of Pollard, 1984). It is not hard to prove that

a functional f defined on D [0,-) is continuous with respect to the above metric

if and only if f is continuous with respect to Dm[O,T], for each T>0. Thus, (3.59)

offers no advantage over Theorem 1 in obtaining via Theorem 5.1 of Billingslev

(1968), the asymptotic distributions of functionals of F1

Proof of Theorem 2: The uniform bound for the first two partial derivatives of h

given by Lemma 2.1 together with Taylor's Theorem imply that for each tE [OT],

m ah

n Fjt-(t) - F(t) Fj(t))

t f llrj=p t a t e r h s ( 3 6 c t

Skrho-oolg se ae 1 f ltse) 1968)ro colueta thpres

.(3.60)

n ~ ~ ~ P (t)) F (t)-jlv~ u,. ) = j((t F(t)) -* a(t in)0,)

-2---J~ 2=l1 O_<tT 0 J OtT j2 2

It follows from Proposition 2.2 that the right side of (3.60) converges to 0

"'- a.s.. We use the fact that convergence in sup norm implies convergence in the

1 Skorohod topology (see page m of Billingsley, 1968) to conclude that the process

.- n a  (t) F F(t) -F^ (t Fu (t) 0as ij[,
"' j~~ (Ul, ..... urn) " ""

"@"1! (F1 (t),..... Mr~)
I --

(F1 t,.. Fro(t))

which is the consequence of Theorem 5.1 of Billingsley (1968) and Theorem 1.

To construct confidence intervals for F(t), we define the following functions

and processes on [0 ')

* - ...- - - - - - - - - -



t dF .(s)

G (F~

:"~t) .(tF= H -(t) n F,'- " (s) <: (n<
,--"~M t i

where

=1

I n;

"-"H H (t) I(Zi > t);

ni il

(F I (t) F (t))

h .(t)

S.t (FI1 (t) ....,Fro(t))

G.(t)
The quantity - is called Greenwood's estimator of the variance of F.(t).

n 

LEMMA 3.3.2. Suppose F1, ... F are continuous and T>0 is such that

m -2
max F.(T)< 1 Then . h2G. is a strongly consistent estimator of h2G..

lj:<m -3 j=l j l J

We note that in view of (1.7), Theorem 2 and Lemma 3.3.2 allow the formation

of asymptotic confidence intervals for F(t), t E [0,T].

Proof: Part (a) of the proposition in Section 2 of Hlall and Wellner (1980) together

with Proposition 2.2 imply that G. is a strongly consistent estimator of G.. Lemma
3 3

2.1 implies that the partial derivatives of h are continuous. Thus, it follows

from Proposition 2.2 that h. is a strongly consistent estimator of h.. The proof
J .3

follows.

. • -
...' '; - --'; . -- '1 ..-" - . -' . " i '; ; .'i . , "--.? .. .-- i . .. -'- -- - i "' .. - " " -" . . .-' ..
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4. ESTIMATION OF THE RELIABILITY IMPORTANCE OF COMPONFNTS•

The reliability importance I.(t) Of coMponent i at time t is defined by

I (t(t(.PhJ "U h ul ... .un U . . m

Im

Let . E be small numbers. Note that

h(F (t) + F t + - hF t),. F~ (t .m (t1.
Iem 1

Thus, the reliability importance of components may be used to evaluate the effect

of an improvement in component reliability on system reliability, and can there-

. fore by verv useful in system analysis in determining those components on which

*- additional research can be most profitably expended. For details, see pages 26-

28 of Barlow and Proschan (1981), and the review by Natvig (1984).

We estimate I. (t) by replacing (F (t) ,.. ,Fo(t)) with (F1 (t), . F (t)) in

(4.1). Formally, define I. by

(t) = t u1 ... u) (4.2)

:")'. . 1 (F (t) ..... 9Fm(t))

PROPOSITIO, 4. 1. Suppose F 1 , F are continuous and T > 0 is such that F (T) < I• ... ' m J

=1, 2,. . , m. Then

' ... m 1 ... Y

,here 1 .... Y is a vector of mean zero Gaussian processes whose covxriance

. tructure is given by

UC ov(Y (t) Y (tJ1

h 2..-.-

= In (Ik-] uTh ... u) = [34.3

1-" ' ' m 1 1 2' .. . a

,-.." 1 dF k  (u)

. .for 0 t -t -T andi 1-
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As before, the covariance terms in (4.3) can he et'Iimated consistently, enabling

the construction of confidence intervals for I.(t).

Proof: For each j define the function gj by

9h
9 gP Pm) -;u(u I um (ul,...,U) for 0 !5Pk 1 , k= 1, 2, ... , m. (4.4)

=(P 1  ..... m

Assume that we can show that

g. is twice continuously differentiable on [0,1] m with first

and second partials bounded in absolute value by 1 uniformly (4.5)

over [0,1]m,

* (cf. Lemma 2.1). The proposition then follows by a straightforward multivariate

. extension of the proof of Theorem 2 with h replaced by g, j =1, 2, m.

We now prove (4.5). It follows from (2.7) that

agj a 2 h (46)

-Pkp 9Pjk p

and that

3) 3
I = , (4.7).PP ?pa Pj'PkOPZ p

for each pE [0 ,1]
. It follows from Lemma 2.1 that g. is continuously differen-

0 tiable and its first partial derivatives are uniformly bounded in absolute value

by 1 on [0, 11
m  Statement (2.9) implies that for distinct indices i, k, q,

3h

63 ( I l'k' p) h (lj lk Oz)P)} - fh (1 00k, , p) h (l j Ok Oz,P) }P.OPkOPZ p jkzk o

(4.8)

{h (0.,lI,pj -1h 1 P){h (0. 0Sj, p1 ) } ) + {h (Oj $0 lZ,p) -h (OjOkO )p))}

in an obvious extension of the notation (2.3). Statement (2.8) implies that if

at least two of the indices j, k, Z are equal then

* : ". . ... " - " d d"" A7- . " - .
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p3hz = 0. (4.9)

It follows in the same manner as in the proof of Lemma 2.1 with (4.8) and (4.9)

replacing (2.7) and (2.8), that h has a continuous third derivative on [0,1] m and

the third partial derivatives are bounded in absolute value by 1 uniformly over

[0 ,1]
m  Thus, for each j, g. has a continuous second derivative and the second

partial derivatives are bounded in absolute value by 1 uniformly over [0 ,1 ]
m .

APPENDIX: RANDOM CENSORSHIP.

In Section 2 we assumed the existence of a censoring random variable Y. that

satisfies (2.1), (2.2), and (2.4). Here we define Y. and formally prove that it

satisfies (2.1), (2.2), and (2.4). Define the binary function j by

c (uI ... urn) =p(lul,...,u), uk=0, 1, k=1, 2 ... , m, (Al)

where 0 is the structure function. (See the paragraph preceding equation (2.6).)

The censoring random variable Y is defined as follows:

' Yij =sup{t: j(l(X il > t) ., (Xim ) 1 .(2

PROPOSITION A.l. For each j, Ylj' Y2j' .... are i.i.d. random variables satisfying

(2.1), (2.2), and (2.4).

Proof: It follows from (A2) that Y is a function of the vector

(I. T(X > t) , ... , i(X t)) . Thus it follows that Ylj Y2 . ... , are i.i .d.

- and that Y.. satisfies (2.2).

We proceed to prove (2.4). The structure function 0 is increasing in its

." arguments (see Definition 2.1, page 6 of Barlow and Proschan, 1981) and hence a

*. fortiori . is increasing in its arguments. Thus

P(Yi > t) = P (t (I (Xi -t) . . . I (X m> t) =1) . (A3)
ii im

It is easy to see that the right side of (A3) is equal to h(l, F(t)) and so Y..

- I)

a... . .. * . . . . .
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satisfies (2.4). To prove that Y.. satisfies (2.1), we consider two cases:

6.. = 1 and 6.. =0. We first prove (2.1) for the case 6.. =1. Since is increas-

ing in its arguments,

"- .. sup{t: (I(xil>t), ... I(Xim>t)) -1)

(A4)
sup{t: 4j(I(X >t) .... I(X.m>t)) = .

j i1 im> ) I.

It is clear that the left side of (A4) equals T. and the right side of (A4) equals
1

Y.".. Hence
13

T. < Y. (AS)
1 13*

Since ij = 1,

X.. !5T.. (A6)
13 1

*"- It is immediate from (AS) and (A6) that X., _Y.., which implies that (2.1) holds

for this case. We now prove that (2.1) is satisfied if 5.. =0. Since 6i. =0, it

follows that X.. >T. =Z... Hence 0= j(I(Xi>Zi) ... I(X. >Z. )) " Thus it
1J 1 1) il1 i j im ij

follows from (A2) that

Y. Z... (A)

It is easy to see that (AS) holds for this case. Thus Y.. =Z , which implies

" "- that (2.I) is satisfied for this case.
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